You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
277 lines
10 KiB
277 lines
10 KiB
/****************************************************************************** |
|
* Spine Runtimes License Agreement |
|
* Last updated January 1, 2020. Replaces all prior versions. |
|
* |
|
* Copyright (c) 2013-2020, Esoteric Software LLC |
|
* |
|
* Integration of the Spine Runtimes into software or otherwise creating |
|
* derivative works of the Spine Runtimes is permitted under the terms and |
|
* conditions of Section 2 of the Spine Editor License Agreement: |
|
* http://esotericsoftware.com/spine-editor-license |
|
* |
|
* Otherwise, it is permitted to integrate the Spine Runtimes into software |
|
* or otherwise create derivative works of the Spine Runtimes (collectively, |
|
* "Products"), provided that each user of the Products must obtain their own |
|
* Spine Editor license and redistribution of the Products in any form must |
|
* include this license and copyright notice. |
|
* |
|
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY |
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY |
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, |
|
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND |
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*****************************************************************************/ |
|
|
|
using System; |
|
|
|
namespace Spine { |
|
public class Triangulator { |
|
private readonly ExposedList<ExposedList<float>> convexPolygons = new ExposedList<ExposedList<float>>(); |
|
private readonly ExposedList<ExposedList<int>> convexPolygonsIndices = new ExposedList<ExposedList<int>>(); |
|
|
|
private readonly ExposedList<int> indicesArray = new ExposedList<int>(); |
|
private readonly ExposedList<bool> isConcaveArray = new ExposedList<bool>(); |
|
private readonly ExposedList<int> triangles = new ExposedList<int>(); |
|
|
|
private readonly Pool<ExposedList<float>> polygonPool = new Pool<ExposedList<float>>(); |
|
private readonly Pool<ExposedList<int>> polygonIndicesPool = new Pool<ExposedList<int>>(); |
|
|
|
public ExposedList<int> Triangulate (ExposedList<float> verticesArray) { |
|
var vertices = verticesArray.Items; |
|
int vertexCount = verticesArray.Count >> 1; |
|
|
|
var indicesArray = this.indicesArray; |
|
indicesArray.Clear(); |
|
int[] indices = indicesArray.Resize(vertexCount).Items; |
|
for (int i = 0; i < vertexCount; i++) |
|
indices[i] = i; |
|
|
|
var isConcaveArray = this.isConcaveArray; |
|
bool[] isConcave = isConcaveArray.Resize(vertexCount).Items; |
|
for (int i = 0, n = vertexCount; i < n; ++i) |
|
isConcave[i] = IsConcave(i, vertexCount, vertices, indices); |
|
|
|
var triangles = this.triangles; |
|
triangles.Clear(); |
|
triangles.EnsureCapacity(Math.Max(0, vertexCount - 2) << 2); |
|
|
|
while (vertexCount > 3) { |
|
// Find ear tip. |
|
int previous = vertexCount - 1, i = 0, next = 1; |
|
|
|
// outer: |
|
while (true) { |
|
if (!isConcave[i]) { |
|
int p1 = indices[previous] << 1, p2 = indices[i] << 1, p3 = indices[next] << 1; |
|
float p1x = vertices[p1], p1y = vertices[p1 + 1]; |
|
float p2x = vertices[p2], p2y = vertices[p2 + 1]; |
|
float p3x = vertices[p3], p3y = vertices[p3 + 1]; |
|
for (int ii = (next + 1) % vertexCount; ii != previous; ii = (ii + 1) % vertexCount) { |
|
if (!isConcave[ii]) continue; |
|
int v = indices[ii] << 1; |
|
float vx = vertices[v], vy = vertices[v + 1]; |
|
if (PositiveArea(p3x, p3y, p1x, p1y, vx, vy)) { |
|
if (PositiveArea(p1x, p1y, p2x, p2y, vx, vy)) { |
|
if (PositiveArea(p2x, p2y, p3x, p3y, vx, vy)) goto break_outer; // break outer; |
|
} |
|
} |
|
} |
|
break; |
|
} |
|
break_outer: |
|
|
|
if (next == 0) { |
|
do { |
|
if (!isConcave[i]) break; |
|
i--; |
|
} while (i > 0); |
|
break; |
|
} |
|
|
|
previous = i; |
|
i = next; |
|
next = (next + 1) % vertexCount; |
|
} |
|
|
|
// Cut ear tip. |
|
triangles.Add(indices[(vertexCount + i - 1) % vertexCount]); |
|
triangles.Add(indices[i]); |
|
triangles.Add(indices[(i + 1) % vertexCount]); |
|
indicesArray.RemoveAt(i); |
|
isConcaveArray.RemoveAt(i); |
|
vertexCount--; |
|
|
|
int previousIndex = (vertexCount + i - 1) % vertexCount; |
|
int nextIndex = i == vertexCount ? 0 : i; |
|
isConcave[previousIndex] = IsConcave(previousIndex, vertexCount, vertices, indices); |
|
isConcave[nextIndex] = IsConcave(nextIndex, vertexCount, vertices, indices); |
|
} |
|
|
|
if (vertexCount == 3) { |
|
triangles.Add(indices[2]); |
|
triangles.Add(indices[0]); |
|
triangles.Add(indices[1]); |
|
} |
|
|
|
return triangles; |
|
} |
|
|
|
public ExposedList<ExposedList<float>> Decompose (ExposedList<float> verticesArray, ExposedList<int> triangles) { |
|
var vertices = verticesArray.Items; |
|
var convexPolygons = this.convexPolygons; |
|
for (int i = 0, n = convexPolygons.Count; i < n; i++) { |
|
polygonPool.Free(convexPolygons.Items[i]); |
|
} |
|
convexPolygons.Clear(); |
|
|
|
var convexPolygonsIndices = this.convexPolygonsIndices; |
|
for (int i = 0, n = convexPolygonsIndices.Count; i < n; i++) { |
|
polygonIndicesPool.Free(convexPolygonsIndices.Items[i]); |
|
} |
|
convexPolygonsIndices.Clear(); |
|
|
|
var polygonIndices = polygonIndicesPool.Obtain(); |
|
polygonIndices.Clear(); |
|
|
|
var polygon = polygonPool.Obtain(); |
|
polygon.Clear(); |
|
|
|
// Merge subsequent triangles if they form a triangle fan. |
|
int fanBaseIndex = -1, lastWinding = 0; |
|
int[] trianglesItems = triangles.Items; |
|
for (int i = 0, n = triangles.Count; i < n; i += 3) { |
|
int t1 = trianglesItems[i] << 1, t2 = trianglesItems[i + 1] << 1, t3 = trianglesItems[i + 2] << 1; |
|
float x1 = vertices[t1], y1 = vertices[t1 + 1]; |
|
float x2 = vertices[t2], y2 = vertices[t2 + 1]; |
|
float x3 = vertices[t3], y3 = vertices[t3 + 1]; |
|
|
|
// If the base of the last triangle is the same as this triangle, check if they form a convex polygon (triangle fan). |
|
var merged = false; |
|
if (fanBaseIndex == t1) { |
|
int o = polygon.Count - 4; |
|
float[] p = polygon.Items; |
|
int winding1 = Winding(p[o], p[o + 1], p[o + 2], p[o + 3], x3, y3); |
|
int winding2 = Winding(x3, y3, p[0], p[1], p[2], p[3]); |
|
if (winding1 == lastWinding && winding2 == lastWinding) { |
|
polygon.Add(x3); |
|
polygon.Add(y3); |
|
polygonIndices.Add(t3); |
|
merged = true; |
|
} |
|
} |
|
|
|
// Otherwise make this triangle the new base. |
|
if (!merged) { |
|
if (polygon.Count > 0) { |
|
convexPolygons.Add(polygon); |
|
convexPolygonsIndices.Add(polygonIndices); |
|
} else { |
|
polygonPool.Free(polygon); |
|
polygonIndicesPool.Free(polygonIndices); |
|
} |
|
polygon = polygonPool.Obtain(); |
|
polygon.Clear(); |
|
polygon.Add(x1); |
|
polygon.Add(y1); |
|
polygon.Add(x2); |
|
polygon.Add(y2); |
|
polygon.Add(x3); |
|
polygon.Add(y3); |
|
polygonIndices = polygonIndicesPool.Obtain(); |
|
polygonIndices.Clear(); |
|
polygonIndices.Add(t1); |
|
polygonIndices.Add(t2); |
|
polygonIndices.Add(t3); |
|
lastWinding = Winding(x1, y1, x2, y2, x3, y3); |
|
fanBaseIndex = t1; |
|
} |
|
} |
|
|
|
if (polygon.Count > 0) { |
|
convexPolygons.Add(polygon); |
|
convexPolygonsIndices.Add(polygonIndices); |
|
} |
|
|
|
// Go through the list of polygons and try to merge the remaining triangles with the found triangle fans. |
|
for (int i = 0, n = convexPolygons.Count; i < n; i++) { |
|
polygonIndices = convexPolygonsIndices.Items[i]; |
|
if (polygonIndices.Count == 0) continue; |
|
int firstIndex = polygonIndices.Items[0]; |
|
int lastIndex = polygonIndices.Items[polygonIndices.Count - 1]; |
|
|
|
polygon = convexPolygons.Items[i]; |
|
int o = polygon.Count - 4; |
|
float[] p = polygon.Items; |
|
float prevPrevX = p[o], prevPrevY = p[o + 1]; |
|
float prevX = p[o + 2], prevY = p[o + 3]; |
|
float firstX = p[0], firstY = p[1]; |
|
float secondX = p[2], secondY = p[3]; |
|
int winding = Winding(prevPrevX, prevPrevY, prevX, prevY, firstX, firstY); |
|
|
|
for (int ii = 0; ii < n; ii++) { |
|
if (ii == i) continue; |
|
var otherIndices = convexPolygonsIndices.Items[ii]; |
|
if (otherIndices.Count != 3) continue; |
|
int otherFirstIndex = otherIndices.Items[0]; |
|
int otherSecondIndex = otherIndices.Items[1]; |
|
int otherLastIndex = otherIndices.Items[2]; |
|
|
|
var otherPoly = convexPolygons.Items[ii]; |
|
float x3 = otherPoly.Items[otherPoly.Count - 2], y3 = otherPoly.Items[otherPoly.Count - 1]; |
|
|
|
if (otherFirstIndex != firstIndex || otherSecondIndex != lastIndex) continue; |
|
int winding1 = Winding(prevPrevX, prevPrevY, prevX, prevY, x3, y3); |
|
int winding2 = Winding(x3, y3, firstX, firstY, secondX, secondY); |
|
if (winding1 == winding && winding2 == winding) { |
|
otherPoly.Clear(); |
|
otherIndices.Clear(); |
|
polygon.Add(x3); |
|
polygon.Add(y3); |
|
polygonIndices.Add(otherLastIndex); |
|
prevPrevX = prevX; |
|
prevPrevY = prevY; |
|
prevX = x3; |
|
prevY = y3; |
|
ii = 0; |
|
} |
|
} |
|
} |
|
|
|
// Remove empty polygons that resulted from the merge step above. |
|
for (int i = convexPolygons.Count - 1; i >= 0; i--) { |
|
polygon = convexPolygons.Items[i]; |
|
if (polygon.Count == 0) { |
|
convexPolygons.RemoveAt(i); |
|
polygonPool.Free(polygon); |
|
polygonIndices = convexPolygonsIndices.Items[i]; |
|
convexPolygonsIndices.RemoveAt(i); |
|
polygonIndicesPool.Free(polygonIndices); |
|
} |
|
} |
|
|
|
return convexPolygons; |
|
} |
|
|
|
static private bool IsConcave (int index, int vertexCount, float[] vertices, int[] indices) { |
|
int previous = indices[(vertexCount + index - 1) % vertexCount] << 1; |
|
int current = indices[index] << 1; |
|
int next = indices[(index + 1) % vertexCount] << 1; |
|
return !PositiveArea(vertices[previous], vertices[previous + 1], vertices[current], vertices[current + 1], vertices[next], |
|
vertices[next + 1]); |
|
} |
|
|
|
static private bool PositiveArea (float p1x, float p1y, float p2x, float p2y, float p3x, float p3y) { |
|
return p1x * (p3y - p2y) + p2x * (p1y - p3y) + p3x * (p2y - p1y) >= 0; |
|
} |
|
|
|
static private int Winding (float p1x, float p1y, float p2x, float p2y, float p3x, float p3y) { |
|
float px = p2x - p1x, py = p2y - p1y; |
|
return p3x * py - p3y * px + px * p1y - p1x * py >= 0 ? 1 : -1; |
|
} |
|
} |
|
}
|
|
|