You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
366 lines
14 KiB
366 lines
14 KiB
/****************************************************************************** |
|
* Spine Runtimes License Agreement |
|
* Last updated January 1, 2020. Replaces all prior versions. |
|
* |
|
* Copyright (c) 2013-2020, Esoteric Software LLC |
|
* |
|
* Integration of the Spine Runtimes into software or otherwise creating |
|
* derivative works of the Spine Runtimes is permitted under the terms and |
|
* conditions of Section 2 of the Spine Editor License Agreement: |
|
* http://esotericsoftware.com/spine-editor-license |
|
* |
|
* Otherwise, it is permitted to integrate the Spine Runtimes into software |
|
* or otherwise create derivative works of the Spine Runtimes (collectively, |
|
* "Products"), provided that each user of the Products must obtain their own |
|
* Spine Editor license and redistribution of the Products in any form must |
|
* include this license and copyright notice. |
|
* |
|
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY |
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY |
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, |
|
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND |
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*****************************************************************************/ |
|
|
|
using System; |
|
|
|
namespace Spine { |
|
/// <summary> |
|
/// Stores a bone's current pose. |
|
/// <para> |
|
/// A bone has a local transform which is used to compute its world transform. A bone also has an applied transform, which is a |
|
/// local transform that can be applied to compute the world transform. The local transform and applied transform may differ if a |
|
/// constraint or application code modifies the world transform after it was computed from the local transform. |
|
/// </para> |
|
/// </summary> |
|
public class Bone : IUpdatable { |
|
static public bool yDown; |
|
|
|
internal BoneData data; |
|
internal Skeleton skeleton; |
|
internal Bone parent; |
|
internal ExposedList<Bone> children = new ExposedList<Bone>(); |
|
internal float x, y, rotation, scaleX, scaleY, shearX, shearY; |
|
internal float ax, ay, arotation, ascaleX, ascaleY, ashearX, ashearY; |
|
internal bool appliedValid; |
|
|
|
internal float a, b, worldX; |
|
internal float c, d, worldY; |
|
|
|
internal bool sorted, active; |
|
|
|
public BoneData Data { get { return data; } } |
|
public Skeleton Skeleton { get { return skeleton; } } |
|
public Bone Parent { get { return parent; } } |
|
public ExposedList<Bone> Children { get { return children; } } |
|
/// <summary>Returns false when the bone has not been computed because <see cref="BoneData.SkinRequired"/> is true and the |
|
/// <see cref="Skeleton.Skin">active skin</see> does not <see cref="Skin.Bones">contain</see> this bone.</summary> |
|
public bool Active { get { return active; } } |
|
/// <summary>The local X translation.</summary> |
|
public float X { get { return x; } set { x = value; } } |
|
/// <summary>The local Y translation.</summary> |
|
public float Y { get { return y; } set { y = value; } } |
|
/// <summary>The local rotation.</summary> |
|
public float Rotation { get { return rotation; } set { rotation = value; } } |
|
|
|
/// <summary>The local scaleX.</summary> |
|
public float ScaleX { get { return scaleX; } set { scaleX = value; } } |
|
|
|
/// <summary>The local scaleY.</summary> |
|
public float ScaleY { get { return scaleY; } set { scaleY = value; } } |
|
|
|
/// <summary>The local shearX.</summary> |
|
public float ShearX { get { return shearX; } set { shearX = value; } } |
|
|
|
/// <summary>The local shearY.</summary> |
|
public float ShearY { get { return shearY; } set { shearY = value; } } |
|
|
|
/// <summary>The rotation, as calculated by any constraints.</summary> |
|
public float AppliedRotation { get { return arotation; } set { arotation = value; } } |
|
|
|
/// <summary>The applied local x translation.</summary> |
|
public float AX { get { return ax; } set { ax = value; } } |
|
|
|
/// <summary>The applied local y translation.</summary> |
|
public float AY { get { return ay; } set { ay = value; } } |
|
|
|
/// <summary>The applied local scaleX.</summary> |
|
public float AScaleX { get { return ascaleX; } set { ascaleX = value; } } |
|
|
|
/// <summary>The applied local scaleY.</summary> |
|
public float AScaleY { get { return ascaleY; } set { ascaleY = value; } } |
|
|
|
/// <summary>The applied local shearX.</summary> |
|
public float AShearX { get { return ashearX; } set { ashearX = value; } } |
|
|
|
/// <summary>The applied local shearY.</summary> |
|
public float AShearY { get { return ashearY; } set { ashearY = value; } } |
|
|
|
public float A { get { return a; } } |
|
public float B { get { return b; } } |
|
public float C { get { return c; } } |
|
public float D { get { return d; } } |
|
|
|
public float WorldX { get { return worldX; } } |
|
public float WorldY { get { return worldY; } } |
|
public float WorldRotationX { get { return MathUtils.Atan2(c, a) * MathUtils.RadDeg; } } |
|
public float WorldRotationY { get { return MathUtils.Atan2(d, b) * MathUtils.RadDeg; } } |
|
|
|
/// <summary>Returns the magnitide (always positive) of the world scale X.</summary> |
|
public float WorldScaleX { get { return (float)Math.Sqrt(a * a + c * c); } } |
|
/// <summary>Returns the magnitide (always positive) of the world scale Y.</summary> |
|
public float WorldScaleY { get { return (float)Math.Sqrt(b * b + d * d); } } |
|
|
|
/// <param name="parent">May be null.</param> |
|
public Bone (BoneData data, Skeleton skeleton, Bone parent) { |
|
if (data == null) throw new ArgumentNullException("data", "data cannot be null."); |
|
if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null."); |
|
this.data = data; |
|
this.skeleton = skeleton; |
|
this.parent = parent; |
|
SetToSetupPose(); |
|
} |
|
|
|
/// <summary>Same as <see cref="UpdateWorldTransform"/>. This method exists for Bone to implement <see cref="Spine.IUpdatable"/>.</summary> |
|
public void Update () { |
|
UpdateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY); |
|
} |
|
|
|
/// <summary>Computes the world transform using the parent bone and this bone's local transform.</summary> |
|
public void UpdateWorldTransform () { |
|
UpdateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY); |
|
} |
|
|
|
/// <summary>Computes the world transform using the parent bone and the specified local transform.</summary> |
|
public void UpdateWorldTransform (float x, float y, float rotation, float scaleX, float scaleY, float shearX, float shearY) { |
|
ax = x; |
|
ay = y; |
|
arotation = rotation; |
|
ascaleX = scaleX; |
|
ascaleY = scaleY; |
|
ashearX = shearX; |
|
ashearY = shearY; |
|
appliedValid = true; |
|
Skeleton skeleton = this.skeleton; |
|
|
|
Bone parent = this.parent; |
|
if (parent == null) { // Root bone. |
|
float rotationY = rotation + 90 + shearY, sx = skeleton.ScaleX, sy = skeleton.ScaleY; |
|
a = MathUtils.CosDeg(rotation + shearX) * scaleX * sx; |
|
b = MathUtils.CosDeg(rotationY) * scaleY * sx; |
|
c = MathUtils.SinDeg(rotation + shearX) * scaleX * sy; |
|
d = MathUtils.SinDeg(rotationY) * scaleY * sy; |
|
worldX = x * sx + skeleton.x; |
|
worldY = y * sy + skeleton.y; |
|
return; |
|
} |
|
|
|
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; |
|
worldX = pa * x + pb * y + parent.worldX; |
|
worldY = pc * x + pd * y + parent.worldY; |
|
|
|
switch (data.transformMode) { |
|
case TransformMode.Normal: { |
|
float rotationY = rotation + 90 + shearY; |
|
float la = MathUtils.CosDeg(rotation + shearX) * scaleX; |
|
float lb = MathUtils.CosDeg(rotationY) * scaleY; |
|
float lc = MathUtils.SinDeg(rotation + shearX) * scaleX; |
|
float ld = MathUtils.SinDeg(rotationY) * scaleY; |
|
a = pa * la + pb * lc; |
|
b = pa * lb + pb * ld; |
|
c = pc * la + pd * lc; |
|
d = pc * lb + pd * ld; |
|
return; |
|
} |
|
case TransformMode.OnlyTranslation: { |
|
float rotationY = rotation + 90 + shearY; |
|
a = MathUtils.CosDeg(rotation + shearX) * scaleX; |
|
b = MathUtils.CosDeg(rotationY) * scaleY; |
|
c = MathUtils.SinDeg(rotation + shearX) * scaleX; |
|
d = MathUtils.SinDeg(rotationY) * scaleY; |
|
break; |
|
} |
|
case TransformMode.NoRotationOrReflection: { |
|
float s = pa * pa + pc * pc, prx; |
|
if (s > 0.0001f) { |
|
s = Math.Abs(pa * pd - pb * pc) / s; |
|
pa /= skeleton.ScaleX; |
|
pc /= skeleton.ScaleY; |
|
pb = pc * s; |
|
pd = pa * s; |
|
prx = MathUtils.Atan2(pc, pa) * MathUtils.RadDeg; |
|
} else { |
|
pa = 0; |
|
pc = 0; |
|
prx = 90 - MathUtils.Atan2(pd, pb) * MathUtils.RadDeg; |
|
} |
|
float rx = rotation + shearX - prx; |
|
float ry = rotation + shearY - prx + 90; |
|
float la = MathUtils.CosDeg(rx) * scaleX; |
|
float lb = MathUtils.CosDeg(ry) * scaleY; |
|
float lc = MathUtils.SinDeg(rx) * scaleX; |
|
float ld = MathUtils.SinDeg(ry) * scaleY; |
|
a = pa * la - pb * lc; |
|
b = pa * lb - pb * ld; |
|
c = pc * la + pd * lc; |
|
d = pc * lb + pd * ld; |
|
break; |
|
} |
|
case TransformMode.NoScale: |
|
case TransformMode.NoScaleOrReflection: { |
|
float cos = MathUtils.CosDeg(rotation), sin = MathUtils.SinDeg(rotation); |
|
float za = (pa * cos + pb * sin) / skeleton.ScaleX; |
|
float zc = (pc * cos + pd * sin) / skeleton.ScaleY; |
|
float s = (float)Math.Sqrt(za * za + zc * zc); |
|
if (s > 0.00001f) s = 1 / s; |
|
za *= s; |
|
zc *= s; |
|
s = (float)Math.Sqrt(za * za + zc * zc); |
|
if (data.transformMode == TransformMode.NoScale |
|
&& (pa * pd - pb * pc < 0) != (skeleton.ScaleX < 0 != skeleton.ScaleY < 0)) s = -s; |
|
|
|
float r = MathUtils.PI / 2 + MathUtils.Atan2(zc, za); |
|
float zb = MathUtils.Cos(r) * s; |
|
float zd = MathUtils.Sin(r) * s; |
|
float la = MathUtils.CosDeg(shearX) * scaleX; |
|
float lb = MathUtils.CosDeg(90 + shearY) * scaleY; |
|
float lc = MathUtils.SinDeg(shearX) * scaleX; |
|
float ld = MathUtils.SinDeg(90 + shearY) * scaleY; |
|
a = za * la + zb * lc; |
|
b = za * lb + zb * ld; |
|
c = zc * la + zd * lc; |
|
d = zc * lb + zd * ld; |
|
break; |
|
} |
|
} |
|
|
|
a *= skeleton.ScaleX; |
|
b *= skeleton.ScaleX; |
|
c *= skeleton.ScaleY; |
|
d *= skeleton.ScaleY; |
|
} |
|
|
|
public void SetToSetupPose () { |
|
BoneData data = this.data; |
|
x = data.x; |
|
y = data.y; |
|
rotation = data.rotation; |
|
scaleX = data.scaleX; |
|
scaleY = data.scaleY; |
|
shearX = data.shearX; |
|
shearY = data.shearY; |
|
} |
|
|
|
/// <summary> |
|
/// Computes the individual applied transform values from the world transform. This can be useful to perform processing using |
|
/// the applied transform after the world transform has been modified directly (eg, by a constraint).. |
|
/// |
|
/// Some information is ambiguous in the world transform, such as -1,-1 scale versus 180 rotation. |
|
/// </summary> |
|
internal void UpdateAppliedTransform () { |
|
appliedValid = true; |
|
Bone parent = this.parent; |
|
if (parent == null) { |
|
ax = worldX; |
|
ay = worldY; |
|
arotation = MathUtils.Atan2(c, a) * MathUtils.RadDeg; |
|
ascaleX = (float)Math.Sqrt(a * a + c * c); |
|
ascaleY = (float)Math.Sqrt(b * b + d * d); |
|
ashearX = 0; |
|
ashearY = MathUtils.Atan2(a * b + c * d, a * d - b * c) * MathUtils.RadDeg; |
|
return; |
|
} |
|
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; |
|
float pid = 1 / (pa * pd - pb * pc); |
|
float dx = worldX - parent.worldX, dy = worldY - parent.worldY; |
|
ax = (dx * pd * pid - dy * pb * pid); |
|
ay = (dy * pa * pid - dx * pc * pid); |
|
float ia = pid * pd; |
|
float id = pid * pa; |
|
float ib = pid * pb; |
|
float ic = pid * pc; |
|
float ra = ia * a - ib * c; |
|
float rb = ia * b - ib * d; |
|
float rc = id * c - ic * a; |
|
float rd = id * d - ic * b; |
|
ashearX = 0; |
|
ascaleX = (float)Math.Sqrt(ra * ra + rc * rc); |
|
if (ascaleX > 0.0001f) { |
|
float det = ra * rd - rb * rc; |
|
ascaleY = det / ascaleX; |
|
ashearY = MathUtils.Atan2(ra * rb + rc * rd, det) * MathUtils.RadDeg; |
|
arotation = MathUtils.Atan2(rc, ra) * MathUtils.RadDeg; |
|
} else { |
|
ascaleX = 0; |
|
ascaleY = (float)Math.Sqrt(rb * rb + rd * rd); |
|
ashearY = 0; |
|
arotation = 90 - MathUtils.Atan2(rd, rb) * MathUtils.RadDeg; |
|
} |
|
} |
|
|
|
public void WorldToLocal (float worldX, float worldY, out float localX, out float localY) { |
|
float a = this.a, b = this.b, c = this.c, d = this.d; |
|
float invDet = 1 / (a * d - b * c); |
|
float x = worldX - this.worldX, y = worldY - this.worldY; |
|
localX = (x * d * invDet - y * b * invDet); |
|
localY = (y * a * invDet - x * c * invDet); |
|
} |
|
|
|
public void LocalToWorld (float localX, float localY, out float worldX, out float worldY) { |
|
worldX = localX * a + localY * b + this.worldX; |
|
worldY = localX * c + localY * d + this.worldY; |
|
} |
|
|
|
public float WorldToLocalRotationX { |
|
get { |
|
Bone parent = this.parent; |
|
if (parent == null) return arotation; |
|
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d, a = this.a, c = this.c; |
|
return MathUtils.Atan2(pa * c - pc * a, pd * a - pb * c) * MathUtils.RadDeg; |
|
} |
|
} |
|
|
|
public float WorldToLocalRotationY { |
|
get { |
|
Bone parent = this.parent; |
|
if (parent == null) return arotation; |
|
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d, b = this.b, d = this.d; |
|
return MathUtils.Atan2(pa * d - pc * b, pd * b - pb * d) * MathUtils.RadDeg; |
|
} |
|
} |
|
|
|
public float WorldToLocalRotation (float worldRotation) { |
|
float sin = MathUtils.SinDeg(worldRotation), cos = MathUtils.CosDeg(worldRotation); |
|
return MathUtils.Atan2(a * sin - c * cos, d * cos - b * sin) * MathUtils.RadDeg + rotation - shearX; |
|
} |
|
|
|
public float LocalToWorldRotation (float localRotation) { |
|
localRotation -= rotation - shearX; |
|
float sin = MathUtils.SinDeg(localRotation), cos = MathUtils.CosDeg(localRotation); |
|
return MathUtils.Atan2(cos * c + sin * d, cos * a + sin * b) * MathUtils.RadDeg; |
|
} |
|
|
|
/// <summary> |
|
/// Rotates the world transform the specified amount and sets isAppliedValid to false. |
|
/// </summary> |
|
/// <param name="degrees">Degrees.</param> |
|
public void RotateWorld (float degrees) { |
|
float a = this.a, b = this.b, c = this.c, d = this.d; |
|
float cos = MathUtils.CosDeg(degrees), sin = MathUtils.SinDeg(degrees); |
|
this.a = cos * a - sin * c; |
|
this.b = cos * b - sin * d; |
|
this.c = sin * a + cos * c; |
|
this.d = sin * b + cos * d; |
|
appliedValid = false; |
|
} |
|
|
|
override public string ToString () { |
|
return data.name; |
|
} |
|
} |
|
}
|
|
|